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Abstract A numerical study is carried out on the natural convection taking place in a horizontal saturated 
porous layer. A sinusoidal temperature distribution, as a moving wave, is superposed on the hot temperature 
of the lower plate. The imposed wavelength of this perturbation is equal to the wavelength of incipient 
Brnard cells. For a given Rayleigh number R, results show that the Brnard cells move with the imposed 
wave if the velocity of the latter remains below a critical value. Beyond this critical value, there is still an 
entrainment of the cells, but at a much lower rate. Further, the cell motion is irregular and time periodic. 

INTRODUCTION 

The effects of temporal or spatial variations of the 
thermal boundary conditions in a horizontal fluid or 
saturated porous layers have received considerable 
attention in the last few years. A large part of the work 
has been focused on the effects of these variations 
considered as imperfections of small amplitude in 
classical stability problems. 

Analytical studies of standing thermal waves of 
small amplitude superposed on the hot temperature 
of the lower wall and to the cold temperature of the 
upper wall have been published for both the fluid and 
the saturated porous layer. Kelly and Pal [1] and Pal 
and Kelly [2] have investigated the case of a fluid layer 
subjected to a spatial periodic temperature on its lower 
and upper boundaries. Their analysis was two-dimen- 
sional. Resonant (k -- kc) and non-resonant (k ~ kc) 
wavelength excitations were considered. For k ~ kc, 
multiple solutions were found to exist when the Ray- 
leigh number was larger than the critical Rayleigh 
number for the existence of classical Brnard cells 
(R > Rc). However their stability analysis indicates 
that all solutions are unstable to a phase shift in the 
horizontal direction, except for the solution with 
maximum amplitude. More recently, investigations 
for the case of a saturated porous layer subjected to 
near-resonant and non-resonant thermal forcing were 
conducted by Rees and Riley [3, 4]. Their studies 
focused on the stability of the resulting two-dimen- 
sional rolls to three-dimensional disturbances. 

Relatively few studies have been done on temporal 
variations of the thermal boundary conditions and 
their effects on classical Brnard cells. A general survey 
of time-periodic flow problems and their stability has 
been published by Davis [5], part of this work being 
devoted to thermal instability. More specifically, 

? Author to whom correspondence should be addressed. 

Schhuon and Caltagirone [6] have considered theor- 
etically and experimentally the case of a horizontal 
porous layer with a timewise periodic temperature 
imposed on the lower boundary. Analytical results 
provide the critical Darcy-Rayleigh number as a func- 
tion of the amplitude and wavenumber of the imposed 
time-dependent disturbance. 

A few studies of moving thermal waves in hori- 
zontal fluid layers have been conducted in the past [7- 
9]. The fluid motion was induced exclusively by the 
periodic travelling thermal wave. Such a thermal wave 
can be produced either by boundary heating [9] or 
from a time-dependent source term [8]. The work 
done by Young et al. [9] is based on a numerical 
approach and involves a finite amplitude convection. 
It confirmed the existence of a net mean flow induced 
by the moving wave, as predicted analytically by pre- 
vious workers. 

Concerning the practical aspects of the present 
work, Whitehead [10] mentioned that studies of mov- 
ing thermal waves have many obvious applications in 
geophysics, biology and engineering. Also, as stated 
by Young et al. [9], those studies have interest as pure 
fluid dynamic problem. Following the investigations 
by Young et al. [9] and Whitehead [10], many analyses 
have been done on the effects of small imperfections 
on classical flows, such as Brnard convection. The 
results of the studies are of considerable interest in the 
study of non-linear systems in general [3]. 

The objective of the present study was to investigate 
numerically the entrainment effect of a moving ther- 
mal wave on the Brnard cells in a horizontal saturated 
porous layer with zero net flow maintained between 
the two horizontal boundaries. The thermal wave 
takes the form of a sinusoidally distributed tem- 
perature superposed on the hot temperature of the 
lower boundary with a wavenumber equal to the criti- 
cal wavenumber kc = n. Moreover, we assume that 
the solution is periodic in the x direction, with a wave- 
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NOMENCLATURE 

arbitrary function, equation (13) 
acceleration due to gravity [cm s 2] 
thickness of the porous layer [cm] 
dimensionless wavenumber, 2r~/2 
permeability of the porous medium 
[cm 21 
critical wavenumber for classical 
B6nard cells 
Nusselt number, equations (14) and 
(15) 
Darcy Rayleigh number, 
9[~KAT'h'/c~v 
critical Rayleigh number 
velocity of imposed thermal wave 
[cms '] 
dimensionless velocity of the thermal 
wave, crU'h'/~ 
dimensionless instantaneous cell 
velocity in the x direction 
dimensionless time-averaged cell 
velocity in the x direction 
time [s] 
temperature [K] 
dimensionless temperature averaged 
over the flow domain, equation (17) 
characteristic temperature [K] 
velocities in the x" and y' directions 
[cm s '] 
coordinates in the horizontal and 
vertical directions [cm]. 

Greek symbols 
thermal diffusivity, ~/(pc)r [cm 2 s k] 

[~ thermal expansion coefficient [K ~] 
c' amplitude of imposed thermal wave 

[K] 
~, conductivity of saturated porous 

medium[calcm ~s t K ~] 
~. dimensionless wavelength 
tl dynamic viscosity of fluid [g cm ~ s ~] 
v kinematic viscosity of fluid [cm 2 s ~] 
# density of fluid [g cm 3] 
(pc)~ heat capacity of fluid [cal cm ~ K ~] 
(pc)p heat capacity of saturated porous 

medium [cal cm 3 K ~] 
~r heat capacity ratio, (pC)p/(pc)f 
r time period 
q~ phase angle 
tl" stream function [cm 2 s ~]. 

Subscripts 
av quantity averaged over the flow 

domain 
ext extremum quantity 
I refers to lower boundary 
u refers to upper boundary. 

Superscripts 
dimensional variable 

* refers to moving coordinate system. 

length corresponding to the imposed perturbation. 
This may appear a bold assumption in the context of 
finite amplitude convection since it is generally admitted, 
from experiments and theoretical predictions, that the 
wavenumber is not a constant but depends on the 
Rayleigh number and possibly on the Prandtl number 
when inertia effects are present [11]. Thus one may 
therefore question the periodicity resulting from the 
interaction between an imposed periodic disturbance 
and finite amplitude Rayleigh-B6nard convection of 
potentially different wavelength. There is, however, 
some ground for the above assumption, which may 
be found in the context of a fluid layer. Firstly, past 
experiments by Chen and Whitehead [12] for the range 
Rc < R < 2.5Rc indicate that a disturbance with an 
arbitrary wavenumber (not too far from kc), imposed 
as a boundary condition, will promote a convective 
pattern corresponding to that wavenumber. Secondly, 
non-linear analyses [13] for finite amplitude con- 
vection with R slightly above Rc preclude the possi- 
bility of a mixed equilibrium containing both dis- 
turbances, i.e. only one will survive. It also appears 
from these studies that initial conditions strongly 
determine the precise wavenumber selected. In the 

present study the initial conditions are replaced by an 
imposed disturbance which is maintained indefinitely. 

We assume here that the flow and temperature fields 
are two-dimensional in conformity with the two- 
dimensional disturbance. Furthermore, the problem 
is solved in a coordinate system moving at the velocity 
of the thermal wave. As seen from the moving ref- 
erence frame, some similarity exists between the pre- 
sent problem and the mixed convection in a horizontal 
layer where heating elements are regularly spaced over 
the lower boundary. Tomimura and Fujii [14], 
Hasnaoui et al. [15] and, more recently, Tangborn 
[16] and Yticel et al. [17], have investigated this mixed 
convection problem for the case of a fluid medium. In 
particular, results from Hasnaoui et al. [15] show that, 
depending upon the intensity of the forced flow, two 
flow regimes may exist. At low Reynolds number, a 
steady state is possible for which the convective cells 
remain attached to the heating elements. Beyond a 
critical value, no steady state is possible. The cells are 
carried with the stream, periodically reinforced and 
weakened, according to their position along the lower 
boundary. 

When handling the governing equations for a satu- 
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Fig. 1. Geometry of the problem. 

rated porous medium in a coordinate system moving 
with respect to the solid matrix, one must account for 
the fact that the solid material has a heat capacity that 
may differ from the fluid itself and that it carries heat 
at a specific rate in its relative motion. A discussion 
on that matter may be found in refs. [18, 19]. 

GOVERNING EQUATIONS 

The geometry considered is a two-dimensional fluid 
saturated porous layer of infinite extent bounded by 
two horizontal impermeable walls (see Fig. 1). T~, is 
the cold uniform temperature of the upper wall and 
T[ the hot temperature of the lower wall. T[ is given 
by 

T [ =  T'~+AT'+e'sin(k'x'-~o't'). (1) 

Equation (1) contains a disturbance in the form of a 
moving thermal wave of velocity U' = o//k' and of 
amplitude e' < AT'. The wavenumber k' is chosen to 
correspond to the critical wavenumber k~ = zt/h" of 
classical Rayleigh-B6nard convection in a Darcy 
porous layer (resonant wavelength excitation). 

It is assumed in the present study that the Bous- 
sinesq approximation holds and that all fluid and solid 
properties are constant, except for density in the buoy- 
ancy term. It is also assumed that dissipation effects 
are negligible. The basic set of equations expressing 
continuity, momentum and energy may then be 
reduced to the following : 

~T 
V2W = - R - -  (2) 

Ox 

~qJ 0W 
u=~-cy and v = - O ~ v v  (3) 

¢3T OT 
a~+u~  +~ 

t?T ¢32T t3ZT 
+ - -  (4) 0y ~X 2 ~y2 

with boundary conditions 

y = 0  t P = 0  T= l+esink(x-Ut))  
y =  1 W = 0  T = 0  ~" (5) 

Equations (2)-(5) have been reduced to dimensionless 
form by introducing the following scales : 

(x,y) = (x',y')/h' t = t'~/ah '2 ] 
(u, v) = (u', v')h'/~ q' = q"/~ 

T=(T'--T'~)/AT" ;T'__;,~[h~f'~. (6) 

R - gflKAT'h' 

In the above equations R and U are the Darcy-Ray- 
leigh number and the dimensionless velocity of the 
thermal wave respectively. 

Young et al. [9] have shown theoretically that a net 
flow could be induced in a fluid layer by a moving 
thermal wave. For  the present problem, no such flow 
is possible since the integration over one wavelength 
it = k/2n of the horizontal momentum equation for a 
Darcy porous medium yields the following result 

~ udx = 0 (7) 

which holds for any y. 
Following the procedure used by Young et al. [9], 

we rewrite the governing equations in a frame of ref- 
erence (x*,y*) moving with the imposed thermal 
wave. Whenever a steady state is possible in that frame 
of reference, it is concluded that B6nard cells are car- 
ried with the wave. We use the following relationships 
in equations (2)-(5) : 

X *  = X - -  UI 

u * = u - U  t 
q,* = ' - g -  g y  . (8) 

~Tmo ving frame = ~ fixed fra me +U~xxC~T 

Dropping the superscript asterisk from now on, the 
problem can be stated as follows : 

dT 
VZtp = - - R ~ x  (9) 

U=~y  and v = - ~ -  (10) 

c3T ~T aT •ZT 02T 
~t +U~x +V @ - Ox 2 + (11) 0y 2 

y=lY=0 qJ=--U~=0 T=T=;+esinkx}" (12) 

A coordinate system moving with respect to the 
porous matrix has already been used by Prats [18] for 
the mixed convection in a horizontal porous layer. 
Prats showed that the relative dimensional velocity 
between the porous matrix and the coordinate system 
had to be U'/a (where U' was the mean velocity of  
the forced flow) in order to recover the equations 
solved by Lapwood [20] for free convection in a satu- 
rated porous medium. For  the present problem, the 
relative dimensionless velocity is U = U'trh'/ct. With 
this particular choice of  U, a does not need to be 
treated as an independent parameter. Thus, the num- 
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Fig. 2. Numerical flow domain. 

ber of  governing parameters  is limited to three, namely 
the Rayleigh n u m b e r  R, the dimensionless velocity U 
and the ampli tude e of the disturbance.  

The solution is assumed to be periodic in the x 
direction according to the wavenumber  kc. Conse- 
quently, the domain  to be solved numerically may be 
restricted to the rectangular  "window" shown in Fig. 2 
with periodic boundary  condi t ions  for the vertical 
boundar ies  of  the form 

. / (x ,  y, t) = . l (x  + 2, y, t) (13) 

where f stands for any physical variable. For  sym- 
metry purposes in graphic representat ions of flow 
and tempera ture  fields, the bounda ry  condi t ion 
T(x ,  0) = 1 - t: cos k x  is used instead of  equat ion (12) 

in Fig. 2. 
The Nusselt  numbers  relative to the upper  and 

lower boundar ies  are defined, respectively, as 

Nu~ = - 2 . d.\ ( t 4) 

Nul = - - ~  - -  d.v. 1151 
x , < V l , =  , 

For  the unsteady convection,  the energy balance 
leads to the following relat ionship 

Nul - Nu ,  ?t (16) 

where T~,, is the average tempera ture  of  the porous  
layer defined as 

7~ = ) ,  , T d x d v .  (17) 

tion, a par t i t ion procedure comparable  with the one 
used by Phillips [21] was applied to the resulting ma- 
trices. Periodic bounda ry  condi t ions  allow the origin 
of  the numerical  domain  to be at any posi t ion along 
the wavelength.  However,  the perfect permeabil i ty of  
the vertical boundar ies  makes  the solution very sensi- 
tive, in the sense tha t  a drift  in the x direction auto- 
matically occurs for the slightest bias in the numerical  
scheme. To overcome tha t  problem,  the successive 
over-relaxat ion method was applied bo th  in the posi- 
tive and negative :v directions and  mean  values were 
taken. 

Prel iminary tests on grid independence were done 
using various mesh sizes and it was found tha t  a 
41 x 41 grid was a good compromise  between com- 
puter  t ime and  accuracy of  the results for the range of  
parameters  considered, 0 < R < 300 and 0 ~ U ~< 6. 
Other  tests were also performed to ensure inde- 
pendence of  the time increment.  Based on the same 
considerat ions,  t ime increments  of  0.0005 and  0.001 
were used for the numerical  results. 

With c set to zero (Lapwood problem),  the numeri-  
cal code was checked to reproduce in a satisfactory 
way the funct ional  dependence Nu vs R, as established 
theoretically and  experimentally by many  au thors  (see 
Cheng [22] and Cal tagirone [23]). For  instance, at 
R = 200, Nu = 3.801 and  hvext = 8.940 were obta ined 
for a bo t tom heated square cavity by the present study 
as compared  with Nu = 3.813 and hoax, = 8.942 from 
Cal tagirone [23]. At R = 300 our  results were 
N u = 4 . 5 0 1  and qJ~, = 11.392. Those from Cal- 
tagirone [23] were Nu = 4.523 and  qJe×, = 11.405. 
Results with ~: set to zero were unaffected when a 
moving  frame of  reference (or equivalently a forced 
flow) was considered for the range 0 ~< U ~< 6. Unde r  
the condi t ions  r, = 0 and U ¢ 0, the flow was unsteady 
periodic, the convective cells being carried along with 
the forced flow. The t ime-averaged cell velocity 17was 
simply deduced from the t ime period r character izing 
the unsteady solution 17 = 2/r and  it was found to be 
practically identical to - U within 0.1%. The estimate 
of  V, the t ime-dependent  velocity of  cells, was based 
on the x posi t ion of  q°~t at a given time. The estimate 
of  that  posi t ion has l imitations inherent  to the space 
discretization. Interpola t ion techniques were used in 
order to improve the accuracy. 

NUMERICAL APPROACH 

A finite difference me thod  was used to solve govern- 
ing equat ions (9)-(11) with bounda ry  condi t ions  (12) 
and (13). The entire domain  (Fig. 2) was discretized 
with a uni form mesh size. An al ternat ing direct ion 
implicit (ADI)  method  was used to solve equat ion 
(11). The Poisson equat ion  (9) was solved by the 
method  of  successive over-relaxation.  The advective 
terms were formulated by central  differences. 

The ADI  method  requires boundary  condi t ions in 
the x and  y directions. To take care of  the periodicity 
condi t ions  (13) prevailing at end points in the x direc- 

RESULTS AND DISCUSSION 

The present results cover the ranges 0 ~ R ~< 300, 
0 ~< U ~< 6 and  0 ~< e ~< 0.3. All computa t ions  were 
done for 2 = 2. 

Standing thermal wave 
(a) ~: = 0 .Without  a thermal  wave, a pure con- 

duct ion state exists when the Rayleigh n u m b e r  R is 
between zero and  a critical value Rc = 4~ 2. Tha t  criti- 
cal value cor respond to the onset of  the convective 
motion.  The behavior  of  the system is depicted in Fig. 
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3(a) and (b) where qJex, is the extremum value of the 
stream function and N u  = N u t  = N u u  is the overall 
Nusselt number, q~ext is a measure of the intensity of 
convection. 

The numerical results (e = 0) define the parabolic 
type of curve expected in the neighborhood of Rc. At 
R > Rc, positive and negative branches correspond 
to clockwise and counterclockwise cells, respectively. 
Also, without a thermal wave there is no preferred 
location of the cells along the x direction in the 
numerical domain. This corresponds to the so-called 
horizontal isotropy of the Rayleigh-B6nard problem. 

(b) a ~ 0. When a standing thermal wave [e = 0.1 
in Fig. 3(a) and (b)] is superposed to the lower wall 
temperature, convective cells are found to exist along 
the layer even for 0 < R < Rc. Those cells alternate 
from clockwise to counterclockwise motion and are 
always in phase (curve with phase angle (p = 0) with 
the thermal wave, the upward flow being located 
above the maximum temperature of the lower wall. 
When R is increased beyond Ro no abrupt change 
is encountered, but W+xt increases more rapidly and 
remains above the previous curve corresponding to 
classical B6nard cells. This solution branch is termed 
'preferred' according to Ehrhard and Muller [24] or 
'natural'  according to Nield and Bejan [25], since 

numerical computations starting from the rest state 
always converge towards that branch. 

A search for steady state solutions out of phase by 
180 ° has been done numerically for the range 
Rc < R < 300. According to their theoretical inves- 
tigation for a fluid layer, Kelly and Pal [1] predicted 
that such a solution is unstable to a phase shift. The 
present numerical results indicate that a comparable 
behavior occurs for the fluid-saturated porous layer. 
The search was done by starting the computation from 
initial conditions containing cells already out of phase 
by exactly 180 ° with respect to the imposed thermal 
wave. After a relatively short period of time for the 
initial transient, the system reaches an almost time 
independent state (pseudo-steady state); however, 
when the computation is pursued long enough, a hori- 
zontal drift of the cells gradually develops. This drift, 
which is almost imperceptible at first, is gradually 
amplified and the cells eventually move by one half 
wavelength to a final location where they are in phase 
with the imposed thermal wave. The behavior is 
depicted in Fig. 4(a) and (b) where ~Jext (clockwise 
cell) and Xma x (horizontal position of Wext) are plotted 
as functions of time. The initial transient starts at t = 2 
and the pseudo steady-state is reached at t "-~ 2.15. At 
t = 6.65 the clockwise cell disappears at the left of the 
flow domain and reappears at the right. 
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Moving thermal wave U ~ 0 
The problem may be considered from a coordinate  

system moving  with the thermal  wave in which case 
this latter becomes a s tanding wave and a net flow 
U towards  the left is then imposed between the two 
boundar ies  (Fig. 2). As ment ioned earlier, whenever  
a steady state solution is possible within tha t  f rame of 
reference, it means  tha t  the moving  wave carries the 
cells with it in the original frame of  reference (Fig. 1 ). 
The present investigation reveals that  for a given pair 
of  values R and  e there exists a critical velocity Uc 
beyond which no steady state is possible. This 
behavior  of  the system is shown in Figs. 5(a), (b) and 
6 for which R = 100 and  ~: = 0.3 and U = 0, 1.5 and 

t = O  

t =  8Z., ¢ 

t = ' C  

Fig. 6. Unsteady periodic flow and temperature fields at 
different time during one cycle (R - 100, U = 2, e = 0.3 and 

= 1.976). 

2, respectively. The flow and  temperature  fields are 
given, respectively, by streamlines on the left and iso- 
therms on the right. Also the thermal  wave is sym- 
metrically located with the max imum tempera ture  at 
the center of  the lower boundary  shown in each figure. 

For  U = 0, the symmetric flow pat tern  of  Fig. 5(a) 
is obtained.  It corresponds  to the preferred b ranch  
already described and consists of two counter - ro ta t ing  
cells producing an upward  flow in the mid region. 
The symmetry  found in Fig. 5(a) is destroyed as U is 
increased progressively. This is i l lustrated in Fig. 5(b) 
(U = 1.5) where the convective cells are skewed and 
displaced downstream.  However,  a steady state may 
be reached as the convective cells remain a t tached to 
the thermal  wave. 

The case with U = 2 shown in Fig. 6 is beyond the 
threshold (from Fig. 7, Uc = 1.713 for R = 100 and 
~; = 0.3). A steady state solution is no more  possible 
and, as observed from the second frame of  reference. 
the cells are carried with the flow U in an irregular 
(time periodic) mot ion.  Figure 6 shows the sequence 
of  flow and  tempera ture  fields occurring at  different 
times dur ing one full period r = 1.976. The shape 
and intensity of  the cells are changing as they move 
towards the left. 

The t ime-averaged velocity of  the cells, ~', as seen 
from the moving  coordinate  system, is plot ted in Fig. 
7 as a funct ion of  U for R = 100 and e = 0.3, 0.2 and  
0.3. The threshold values Uc ~ 0.605, 1.183 and 1.713 
are obta ined by ext rapola t ion of  the numerical  results. 
With U increasing to large values, it may also be 
deduced from Fig. 7 that  I~/U tends asymptotical ly 
towards  unity. Thus,  for an  observer at rest with 
respect to the porous  matr ix  (original coordinate  sys- 
tem), the en t ra inment  of  the convective cells by the 
moving  thermal  wave is gradually reduced to zero 
with increasing U. 

Threshold  values Uc have been determined for the 
range 60 < R < 300 and  for the three ampli tudes  
~: = 0.1, 0.2 and  0.3. Results are shown in Fig. 8. 
The lower limit Rc = 4~z 2 for the existence of  classical 
B6nard cells has been identified in the figure. The 
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(a) 

V 

amplitude e is a parameter that influences strongly the 
(c) 

value of Uc and it was found advantageous to plot 
the ratio Uc/e as a function of R since the numerical 
results corresponding to different e almost collapse 
together. Uc/e is minimum at R ~ 100 and increases 
in both positive and negative directions. With R Nu 

decreasing from 100 to Ro the intensity of the con- 
vective cells depends more and more upon the thermal 
wave itself and this explains why the cells can be 
carried with it more easily. On the other hand, for the 
range R > 100, the reason for Bgnard cells to develop 
a stronger bound with the thermal wave is not physi- 
cally obvious. For that range, the trend is similar 
to the one observed by Hasnaoui at al. [15] in their 
numerical study of mixed convection in a horizontal 
channel heated periodically from below. 

The unsteady (periodic) state obtained for U > Uo 
as observed from the moving coordinate system, is 
characterized by an irregular cell motion relative to 
the thermal wave. This behavior is shown in Fig. 9(a) 
where V is given as a function of time. Other flow and 
heat transfer parameters such as the extrema of the 
stream function shown in Fig. 9(b) or the Nusselt 
numbers Nu, and Nu~, shown in Fig. 9(c), are also 
characterized by a time periodic dependence. 

A particular feature of the unsteady periodic state is 
the irregular (cyclic) way by which heat is transferred o.s 
from the lower boundary to the upper boundary. It 

0.6 
may be seen in Fig. 9(c) that Nu~ and NUl are out of 
phase in their cyclic variations. Thus the heat content 0.4 
of the saturated porous layer must also be time-depen- 
dent. During one cycle, part of the heat from the lower 0.2 
boundary is at first stored within the layer and then o 
released through the upper boundary. At each time 
step, in the numerical computation, the energy bal- -0.2 

ance expressed by equation (16) is satisfied to a high -0.4 
degree of accuracy by the present numerical code, as 
can be seen in Fig. 10 where the left and right terms -0.6 
of equation (16), shown respectively by dotted and 
solid lines, have been computed separately for the case 
R =  100, U = 6 a n d e = 0 . 3 .  

12 

10 

8 

6 

(b )  
7.5 

7 

6.5 

5,5 

0.5 1 1.5 2 2.5 
t 

5 

4.8 

0 

- - ~  . . . . . . . .  I ' I I - I  

0.8 1 1.5 2 2.5 

t 

4 

3,5 

3 

2.5 

1.5 0 

NUI  . . . . . . . . . .  Nu,  

. . . . . . . .  I 

0.5 1 1.5 2 2.5 3 
t 

Fig. 9. Time dependence of V, W . . . .  tI/min, Nu, and Nu~ 
(R = 100, U = 6 and e = 0.3). 

CONCLUSIONS 

The behavior of convective cells in a horizontal 
saturated porous layer when a moving thermal wave 
is superposed on the hot temperature of the lower 
boundary has been investigated numerically for the 
range Rc < R < 7.5Ro The wavelength of the modu- 
lation were set equal to the critical wavelength of 
the incipient Brnard cells and we assumed that the 
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Ot 
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Fig. 10. Energy  balance  (R = 100, U = 6 and  ~ = 0.3). 
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resulting periodicity of the solution would correspond 
to the imposed disturbance, thus reducing our solu- 
tion domain to one wavelength. 

The main finding is the occurrence of  a threshold 
separating steady from unsteady time periodic solu- 
tions. That threshold depends strongly upon the 
amplitude ~: of  the thermal wave and weakly upon the 
Rayleigh number. Below the threshold, the behavior 
of  the cells gives rise to a steady state solution when 
the governing equations are solved in a coordinate 
system moving with the thermal wave. The cells are 
then carried at the velocity of  the imposed thermal 
wave. Above the threshold, the cells move in a quite 
irregular way with a time-averaged velocity much 
lower than the thermal wave. An unsteady periodic 
state occurs for which all physical parameters are 
characterized by a cyclic time dependence. An impor- 
tant feature resulting from this irregular motion is the 
release of  the heat by bursts from the saturated porous 
layer through the upper boundary.  

The limit case of  a thermal wave at rest with respect 
to the porous matrix was first considered. For  Ray- 
leigh numbers larger than Re, two distinct solutions 
were discussed, one with the cells in phase with the 
thermal wave, i.e. with upward flows above the 
locations of  maximum temperature,  and the other 
with cells out of  phase by 180. The first type is stable 
and belongs to the preferred branch of  a bifurcation 
at Re, the thermal wave acting as an imperfection 
brought to the system. The second type of  solution 
forms an isolated branch and is unstable to a phase 
shift. 
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